DNA Testing Alpha S1 Casein

Agenda

- Milk constituents and composition
- DNA, chromosomes and genes
- Alpha S1 Casein in dairy goats research
- ADGA testing procedure
- Results interpretation (using, predicting and submitting)
- Case study
- Live demo
- Resources
- Questions?

Milk Constituents

- Key components are water, protein, fat, lactose, vitamins and minerals
- Composition can be affected by various factors (species, breed, diet, stage of lactation, health, genetic factors, etc.)

Compartment	Major constituents
Aqueous phase	Solution ash, Ca, Mg, PO4, Na, K, Cl, CO2, whey proteins (a-
	lactalbumin, β-lactoglobulin), lactoferrin, immunoglobulin, lysozyme, serum albumin, lactose, oligosaccharides, amino acids, urea, B-vitamins, ascorbic acid.
Colloidal dispersion	Caseins (α , β , κ), Ca, PO ₄
Emulsion	Fat globules, triacylglycerols, fat soluble vitamins, cholesterol esters
Fat globule membrane	Milk fat globule membrane proteins, phospholipids, enzymes, trace minerals
Cells	Macrophages, neutrophils, lymphocytes, epithelial cells, leukocytes

Table 1: Major constituents of milk. Adapted from Jensen et al, (1991).

Milk Composition Compare

Composition Comparison

Table 2: Gross milk composition across different species. Adapted from Park et al, (2007) and USDA National Nutrient Database for Standard Reference. g and kJ are per 100g milk.

Nutrient	Unit	Goat	Sheep	Cow	Human
Water	g	87.03	80.7	88.13	87.5
Energy	kJ	288	451	255	291
Fat	g	4.14	7	3.25	4.38
Protein	g	3.56	5.98	3.15	1.03
Carbohydrate	g	4.45	5.36	4.8	6.89
Casein	%	2.4	4.2	2.6	0.4
Lactose	%	4,1	4.9	4.7	6.9

Milk Protein

Protein

- 80% of protein in milk is casein (4 types)
- Casein characteristics and amount account for:
 - Cheese yield
 - Curd behavior (firmness and draining)
 - Ageing behavior
 - Milk allergies

Protein component	Goat	Cow	Human	
Casein *				
as1-casein	5-17	38	Trace	
as2-casein	6-20	10	Trace	
β-casein	50	40	70	
κ-casein	15	12	27	
Whey protein **				
α-lactalbumin	0.12	0.12	0.18	
β-lactoglobulin	0.22	0.33	Absent	
Total Protein	2.7	3.3	0.9	

Table 6: Milk protein composition across species. * % of total casein ** g per 100g milk. Total casein in goat milk represents around 80% of total milk protein. Table adapted from (Akers, 2002, Inglingstad et al., 2010, Farrell Jr et al., 2006)

1/28/2017

Milk - Casein

- Average diameter of goat casein particles (micelles) are larger than those in cow milk
- Relationship between size of casein particles and curd firmness and set speed
 - Larger size equal decrease in firmness and set speed
 - Explains the delicate curd texture for goat milk
- Four types of casein (French study 1992)

	Average relative								
	conte	ents in EXTRE	ME VALUES						
CASEIN TYPE	COW MILK	GOAT MILK IN	GOAT MILK						
	*	\$	點						
alpha S1	38	5.6	0-20						
alpha S2	12	19.2	10-30						
beta	36	54.8	43~68						
kappa	14	20.4	15-29						
	-								
Total casein content	100%	100%							

Genetics Definitions

- DNA
- Chromosome
- Gene

Definition - DNA

DNA (deoxyribonucleic acid)

DNA is a double helix formed by base pairs attached to a sugar-phosphate backbone.

Definition - Chromosome

- Individual segments of DNA. Contained in cell nucleus and can be seen during cell division.
- Goats have 30 chromosome pairs (60 total)
- Each chromosome has a unique shape

DNA and histone proteins are packaged into structures called chromoso

Definition - Gene

- Basic unit of heredity made up of DNA
- Two copies of each gene, one from each parent
- Vary in size (length)

Genes are made up of DNA. Each chromosome contains many genes.

Alpha S1 Casein - Variants

- The gene linked to Alpha S1 Casein (CSN1S1) is known
- Allele
 - One of two or more alternative forms of a gene that arise by mutation and are found at the same place on a chromosome.
- Variants (alleles) are grouped by:
 - Strong (3.5 g/l) A, B, C, H, L
 - Intermediate (1.1 g/l) E, I
 - Weak (.45 g/l) F, D, G
 - Null (o g/l) 01, 02, N

Alpha S1 Casein Evolution

Figure 6: Schematic of proposed evolution of CSN1S1 alleles. Major amino acid changes between the A-type and B- type lineages are indicated. Adapted from Martin and Leroux (2000).

Alpha S1 Casein Change

Table 2

Effect of the α_{s1} casein genotype on protein content (g/kg) for a progeny-tested male population and estimated separately for the Saanen and Alpine breeds

Genotype group	α _{s1} casein genotype	Saanen	Alpine
	BC	3.7	*
	AB	enotypeSaanenAlpine3.7*2.51.72.4*2.42.51.0*1.6*1.10*1.01.01.00.61.00.51.10.51.1*1.1*1.11.11.10.51.11.11.11.11.11.11.10.51.1	
Strong	BB		*
Strong	AA	2.2	2.5
	AC	1.6	*
	СС	*	*
	CE	1.0	*
	AE	1.0	1.0
	BF	0.6	0.9
	CF	0.6	*
Intermediate	BE	0.5	1.1
	AF	0.5	0.7
	AO	*	*
	во	*	*
	со	*	*
	EE	-0.7	0.2
Weak	EF	-0.9	-0.4
	EO	*	*
	FF	*	*

* Effect was not estimated because no animals were recorded

Alpha S1 Casein Prevalence

From Caprine Alpha S1 Casein FB group database

Genotype	Alp	ine	Nige	rian	Lama	ancha	Nub	ian	Saa	nen
A/A	2	1.29	17	33.33	34	34.34	37	20.44	0	0.00
A/B	0	0.00	22	43.14	7	7.07	98	54.14	0	0.00
A/E	22	14.19	0	0.00	23	23.23	0	0.00	0	0.00
A/F	19	12.26	0	0.00	21	21.21	0	0.00	0	0.00
A/N	1	0.65	0	0.00	0	0.00	9	4.97	0	0.00
A/01	1	0.65	0	0.00	0	0.00	0	0.00	0	0.00
B/B	4	2.58	10	19.61	1	1.01	20	11.05	9	7.03
B/E	5	3.23	2	3.92	0	0.00	1	0.55	39	30.47
B/F	14	9.03	0	0.00	1	1.01	4	2.21	16	12.50
B/N	0	0.00	0	0.00	0	0.00	12	6.63	0	0.00
E/E	13	8.39	0	0.00	1	1.01	0	0.00	23	17.97
E/F	39	25.16	0	0.00	5	5.05	0	0.00	24	18.75
E/O1	1	0.65	0	0.00	0	0.00	0	0.00	0	0.00
F/F	29	18.71	0	0.00	6	6.06	0	0.00	17	13.28
F/01	5	3.23	0	0.00	0	0.00	0	0.00	0	0.00
Sample Count	155		51		99		181		128	

How to test

- 1. Request and pay for test
- 2. Receive test paperwork
- 3. Take sample
- 4. Send sample to lab
- 5. Receive results

Requesting a DNA Test

- You can request a test online at **DNA Test Request Form**
- The required info is:
 - Membership information
 - Payment
 - Animal ID and requested tests
 - Comments (optional)

Request – Membership Info

- Required information is fairly self explanatory
- Fill out completely

Request – Payment

- Check how you would like to pay for testing
- The first option is easiest (taking funds from your account)
- ADGA Plus members get discounted prices

Payment Information

- Please use the funds in my account
- I need to add funds and will contact you when I have placed them in my account
- I will call the office with payment information
- $\odot\,$ I am a current ADGA Plus member and want to submit for that program an individual no parentage

Ocheck if Current ADGA Plus Member

Request – Animal ID and Tests

- If registered, registration number and last part of name (ex. A1693170 Amelie)
- If unregistered, RE/LE DOB Sex Breed (ex. GDM/H40 4/1/2016 Doe Alpine)
- Select tests
- Select sample type (hair, blood or semen)

Goat ID & last part of name
Test Request
DNA - Individual Only but parents checked if on file
G-6-S
Alpha S1 Casein
Check if DNA has already been done before.
Check if you have submitted a Buck Collection form for this animal
Check if you are the breeder and want the G6S or Casein result included as part of the pedigree. If you are not the breeder, you will need to contact them if you desire this option.
Sample Type Hair

Request – Comment and Submit

- Add comments for special handling or questions
- When all information is complete, press Submit and the form will be sent
- You will get a notification via email that the form has been received

Comments:	
	Submit

1/28/2017

Receive Test Paperwork

- After ADGA has processed your submission, they will mail a testing packet
- The packet contains:
 - Cover letter with instructions
 - VGL (Veterinary Genetics Lab) mailing label
 - Animal "ADGA DNA Record of Identification" (triplicate) with sample label

- Hair samples are recommended
 - Any age can be done easily
 - Guard hairs with **root bulbs** (20-40) are required
 - Place hair in a new, clean 4x9 envelope and seal
- Semen can also be used
 - Remove desired straw from tank and allow to air thaw
 - Place in a small Ziploc bag
- Complete sampling instructions are on each Animal ID form and can also be found online at: <u>http://adga.org/performance-programs/dna-sample-collection/</u>

Send Sample to Lab

- Affix sample label to hair sample envelope
- Sign and date Animal DNA test ID forms
 - One for VGL
 - One for ADGA
 - One for owner (signature not necessary)
- Place one copy of test form and sample in large envelope (10 x 13 manila works well) and affix VGL mailing label
- Mail it off to VGL with proper postage
- Mail the ADGA copy to ADGA

Receiving Results

- Usually get results back about 2 weeks after you send sample off
 - Mail to VGL
 - Testing at VGL
 - Results to ADGA
 - Results to submitter
- You will receive results as a PDF attachment from ADGA
- PDF file contains certificates of test results

Results Certificate

ALPHA s1 CASEIN

A/A

Interpretation of result code:

A and B variants, are associated with a high content of alpha s1 casein in milk. *

E, F and N variants, are associated with a lower content of alpha s1 casein in milk.

O1 represents a non-functional variant ("null") that is associated with lack of alpha-s1 casein production.

Any combination of "high" variants will produce high amounts of alpha s1 casein.

Any combination of "high" and "low" variants, or "high" and "null" variants, will produce intermediate amounts of alpha s1 casein.

Any combination of "low" variants, with or without "null" will produce low amounts of alpha s1 casein. Goats with two copies of the O1 "null" variant will not produce alpha s1 casein protein.

* This test is not designed to detect subvariants of A and B.

You have results. Now what?

- Interpretation
- Use
 - With production test results
 - Breeding decisions
- Predicting results
- Submit results to the Alpha S1 Casein database

Interpretation of Results

Genotype expression

- Strong (A/A, B/B, A/B)
- Intermediate (A/E, B/E, A/F, B/F, E/E)
- Weak 1 (A/N, A/O1, B/N, B/O1)
- Weak 2 (E/F, F/F, E/N, E/O1, F/N, F/O1)
- Null (N/N, O1/O1)
- There is no good or bad. It's informational.
 - For cheese making, strong genotype is preferred
 - For casein reduction, weak or null genotype is preferred
 - More work needs to done quantifying results

Using Results

- With production test results
 - Most labs will test milk samples for fat%, protein% and SNF
 - See how this correlates to alpha s1 casein results
- In breeding programs
 - If you are looking to increase cheese yield, try to use strong genotype sires and dams
 - Different breeds require different tactics
 - Swiss breeds, weak on strong genotypes would require generations of testing and culling
 - Lamancha, Nubian and Nigerian would require culling of intermediate, weak and null alleles. Much easier to maintain strong genotype

Predicting Results

- If you have sire and dam alpha s1 casein result
 - Use a Punnett Square to determine expected genotypes and probability
 - Use the Punnett Square calculator at:

http://www.silverfallchinchilla.com/genetics/PunnetCalculator.asp

- If you have either the sire or dam, but not both
 - Can sometimes infer the missing result
 - Multiple progeny results sometimes make this easier

Prediction Examples

1/28/2017

Submitting Results

- To ADGA
 - If you checked the box to have results included in pedigrees, your results will be public
 - Search at https://adga.org/casein-results/
- To the Caprine Alpha S1 Casein FaceBook group
 - Forward your casein results to <u>geneder@wvi.com</u>
 - They will be checked against existing pedigree records and hand entered
 - A searchable list is available at: <u>Alpha S1 Casein Google Sheet</u>

Case Study – Personal Experience

- Started Alpha S1 Casein testing in 2016
 - To date, all live bucks, does and collected AI sires have been tested
 - 63 total
- Have been on DHIR owner sampler since 2012
- Switched to DRMS 2016 and have been using PCDART for herd management
 - Added alpha s1 casein results as a user defined field
 - Created groups to quantify components of intermediate and weak genotypes
 - Created custom reports to track groups on test days

Case Study – Personal Experience

Unique herd situation

- All purebred French Alpine
- Have worked with the same lines for many years
- All milking does fed the same and freshen within a month or two
- Eliminates factors due to breed and management differences
- Can more readily compare different alpha s1 casein genotypes as they relate to milk and component production
- Run a custom test day report to compare different genotypic groups
 - Started doing this in October 2016
 - Intermediate group is consistently higher in fat%, Prot% and SNF%
 - Looking forward to tracking a whole lactation
 - Might add extra groups as needed

Case Study – Missdee's Alpines

					Ref	Days	Curr	\mathbf{Curr}	Curr	Curr	Fat	Cur
	Barn		Calv	\mathbf{Let}	Age	In	T.D.	T.D.	T.D.	T.D.	Prot	ΤD
Index	Name	AS1C	Date	No.	Yr-Mo	Milk	Milk	%Fat	%Prt	%SNF	Ratio	MUN
37	DANCER	EE	03/10/16	4	04-07	239	12.5	3.9	3.2	8.2	1.2	22
38	FL ORA	FF	03/06/16	4	04-07	243	11.2	3.3	3.1	8.2	1.1	18
45	AMELIE	FF	03/13/16	2	02-07	236	9.9	3.1	3.3	8.5	0.9	21
39	BAI	\mathbf{EF}	03/03/16	4	05-06	246	8.1	3.1	3.3	8.3	0.9	21
7	EVIE	\mathbf{EF}	03/16/16	2	02-07	233	6.8	4.0	3.4	8.0	1.2	25
23	BEATRIX	\mathbf{EF}	03/14/16	2	02-07	235	6.1	3.6	3.4	8.4	1.1	22
31	LAYLA	FF	04/26/16	1	01-07	192	4.5	3.5	3.3	8.2	1.1	21
36	SLANT	\mathbf{FF}	04/27/16	1	01 - 07	191	4.4	1.9	3.0	7.8	0.6	19
26	VICKY	\mathbf{EF}	04/18/16	1	01-07	200	4.3	3.6	3.8	8.7	0.9	26
29	ELECTRA	FF	03/18/16	2	02 - 07	231	4.2	3.9	3.5	9.0	1.1	24
12	CALISTA	\mathbf{EF}	03/05/16	8	08-06	244	3.8	4.0	3.3	8.4	1.2	17
****	11 cow	avera	ige for ma	ajor	group	01 (1,	1)	Grou	ւթ		****
				3		226	6.9	3.5	3.3	8.3	1.1	21
49	CHARLIZ	AE	04/20/16	1	01 - 07	198	8.4	4.0	3.6	8.8	1.1	19
18	PEPPER	AF	03/13/16	2	03 - 05	236	8.2	3.8	3.6	8.4	1.1	18
30	CHLOE	AE	03/15/16	1	02 - 07	234	7.0	4.5	3.4	8.4	1.3	18
22	LILAC	AF	04/20/16	1	01 - 07	198	6.6	5.4	4.0	9.0	1.4	22
28	LILY	AF	04/04/16	2	03-07	214	6.5	3.6	3.7	8.7	1.0	23
27	BONNY	AE	04/17/16	1	01 - 07	201	6.4	4.0	3.6	8.6	1.1	20
43	VELVET	AF	03/05/16	5	05 - 07	244	6.2	3.1	3.7	8.9	0.8	20
47	CEL INE	AE	02/18/16	1	02 - 05	260	6.2	3.3	3.8	8.9	0.9	14
4	CORA	BF	03/30/16	1	02 - 06	219	5.3	3.4	3.2	8.3	1.1	19
41	DEL ILA	AE	03/12/16	2	02 - 05	237	4.3	4.8	4.1	9.4	1.2	19
42	CATALNA	AF	03/08/16	5	05-06	203	Dry					
****	11 cow	avera	age for ma	ajor	group	02 (2,	2)	Grou	ւթ		*****
				2		222	6.5	4.0	3.7	8.7	1.1	19

1/28/2017

Live Demo

- <u>Punnett Square calculator</u>
- <u>Searchable alpha s1 casein results sheet</u>
- PCDART integration with alpha s1 casein results

Resources

- ADGA Genetics website
 - <u>http://adgagenetics.org</u>
- American Dairy Goat Association website
 - <u>http://adga.org</u>
- Caprine Alpha S1 Casein FaceBook Group files section
 - <u>https://www.facebook.com/groups/1753213781623522/files/</u>
- Including α_{s_1} casein gene information in genomic evaluations of French dairy goats
 - <u>https://gsejournal.biomedcentral.com/articles/10.1186/s12711-016-0233-x</u>
- Punnett Square Calculator
 - <u>http://www.silverfallchinchilla.com/genetics/PunnetCalculator.asp</u>
- Public group alpha s1 casein database
 - <u>https://docs.google.com/spreadsheets/d/1_E76ePkoAiHojNswIKLGFqbNoyiP75KtJ65nBguat9Y/edit?usp=sharing</u>

Questions?